Code No.: 12323 O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) II-Semester Backlog Examinations, August-2023 Circuit Theory

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PC
1.	What are the differences between dependent and independent sources?	2	1	1	1,2
2.	State the source Transformation principle.	2	1	1	1,2
3.	Define phase angle and phase difference.	2	1	2	1,2
1.	Define peak factor of an alternating quantity.	2	1	2	1,2
5.	The resistance of a coil is $140~\Omega$ and its inductance is $0.85~H$. Find the current, the power factor and the circuit impedance when the coil is connected to $120~V$, $60~Hz$ supply.	2	3	3	1,2,
6.	Draw the impedance triangle of series R-L and R-C circuits.	2	1	3	1,2
7.	State the maximum power transfer theorem.	2	1-	4	1,2
8.	What is the condition for the maximum power to be transferred in AC circuit?	2	1	4	1,2
9.	A three-phase, three-wire balanced delta -connected load yields wattmeter readings of 1154 W and 557 W. Find the power factor of the load.	2	4	5	1,2,3
10.	What do you understand by a balanced load of a three phase circuit?	2	1	5	1,2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
1. a) 1	Using source transformation, calculate power dissipated in 10Ω resistor in the circuit shown in figure:	4	4	1	1,2,3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
b) S	tate and explain Kirchhoff's current law and voltage law with examples.	4	2		

1					
12. a) U	Use the nodal analysis to determine voltage at node 1 and the power supplied by the dependent current source in the network shown in figure:	4	4	2	1,2,3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				9 5 7
2.37	$ \begin{array}{c} $				
b)	Find the rms value, average value and form factor of the voltage wave shown in figure:	4	2	2	1,2
_ = =	†				
	100 V				
	π/2 π 3π/2 2π				
	C. L. Late the everege newer absorbed	4	3	3	1,2,3
13. a)	In the circuit shown in below figure, Calculate the average power absorbed by the resistor and inductor. Find the average power supplied by the voltage source.			- 1	-,-,-
	3 Ω 				
Ť	320 <u>/45°</u> V (±)				
b)	With a neat circuit diagram and phasor diagram, derive the expression for steady state current of a series RC circuit.	4	2	3	1,2
14. a)	Explain the procedure to find thevenin's resistance of a circuit with DC excitation for both without dependent sources and with dependent sources.	4	2	4	1,2
b)	State and explain Norton's theorem.	4	2	4	1,2
15. a)	Derive the expression for average three power in a three phase circuit.	4	2	5	1,2
b)	Three identical coils, each of resistance 10ohm and inductance 42mH are connected (a) in star and (b) in delta to a 415V,50 Hz, 3-phase supply. Determine the total power dissipated in each case	4	4	5	1,2,3

Code No.: 12323 O

16. a)	Find the value of resistance R, if the current is I=11 A and source voltage is 66 V as shown in figure:	4	3	1	1,2,3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
b)	A series circuit consisting of a 10 ohm resistor, 100 µF capacitance and a 10 mH inductance is driven by a 50 Hz AC voltage source of maximum value 100 volts. Calculate the equivalent impedance, current in the circuit, the power factor and power dissipated in the circuit.	4	3	2	1,2,3
a)	Answer any <i>two</i> of the following: Two coils A and B are connected in series across a 240 V, 50 Hz supply. The resistance of coil A is 5 observed in the connected in series across a 240 V, 50 Hz supply.	4	3	3	1,2,3
	The resistance of coil A is 5 ohms and inductance of coil B is 0.015 H. If input from the supply is 3 kW and 2 kVAr, find the resistance of coil B and inductance of coil A. Also calculate voltage across each coil.				1,2,5
b)	State and explain Superposition theorem with an example.	4	2	4	1,2,3
c)	With a neat circuit diagram and phasor diagram, explain the measurement of three phase power using two wattmeters in a three phase circuit.	4	2	5	1,2,3

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

		, i O. i logialli
i)	Blooms Taxonomy Level – 1	200/
ii)	Blooms Taxonomy Level – 2	20%
	Discours Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
